B.Tech. DEGREE EXAMINATION JANUARY 2023

Fifth Semester
 Information Technology
 THEORY OF COMPUTATION

(2013-14 Regulations)
Time: Three hours
Maximum: 75 marks

$$
\text { SECTION A - (10 * } 2 \text { = } 20 \text { marks })
$$

Answer ALL the questions.

1. Give the DFA accepting the language over the alphabet 0,1 that has the set of all strings such that each block of 5 consecutive symbol contains at least two 0 's.

2. Compare the functionalities of Mealy and Moore machines.

3. Give English description of the following language (0+10)*1*.

This is the language of strings in which there are no two consecutive 1's except for possibly a string of 1's at the end.

4. Let G be the grammar with $S \rightarrow$ aSa / bSb / ϵ

Construct Parse tree for the input string w = 'aabbaa'

5. List the primary objectives of Turing machine.

The main advantages of the Turing machine is we have a tape head which can be moved forward or
Backward and the input tape can be scanned. The simple logic which we will apply is read out each ' 0 ' Mark it by A and then move ahead along with the input tape and find out 1 convert it to B .

6. State when a problem is said to be undecidable and give an example of an undecidable problem.

A problem whose language is recursive is said to be decidable. Otherwise the problem is said to be undecidable. Decidable problem have an algorithm that takes as input an instance of the problem and determine whether the answer to that instance is "yes" or "no".

Eg. Of undecidable problems are (1) Halting problem of the TM.

7. Convert the following CFG to PDA.

$\mathrm{S} \rightarrow \mathrm{aAA}, \mathrm{A} \rightarrow \mathrm{aS} / \mathrm{bS} / \mathrm{a}$.

$$
\begin{aligned}
& \text { The } P D A \quad P=\left(Q, \varepsilon, F, \delta, q_{0}, z_{0}, F\right) \text { is defined as } \\
& Q=\{q\} \\
& \Sigma=\{a, b\} \\
& \Gamma=\{a, b, s, A\} \\
& q_{0}=q \\
& z_{0}=s \\
& F=\{ \} \\
& \text { And the tiansilon fundion is defined as } \\
& \delta(q, \epsilon, s)=\left\{\left(q, a_{A A}\right)\right\} \\
& \delta(q, c, I)=\{(q, a s),(q, b s),(q, a)\} \\
& o f(q, a, a)=\{(q, \epsilon)\} \\
& \delta(q, b, b)=\{(q, e)\}
\end{aligned}
$$

8. Does a Pushdown Automata have memory? Justify.

Yes. Finite automata can be used to accept only regular languages. Pushdown automata is a finite Automata with extra memory called stack which helps pushdown automata to recognize Context Free Languages.
9. Differentiate Top down and bottom up parsing approaches.

TOP - DOWN PARSER	BOTTOM - UP PARSER
1. This is top-down (LL) parser.	This is bottom-up (LR) parser.
2. It is attempts to find left most derivations for an input string.	It can be defined as an attempt to reduce the input string to the start symbol of a grammar.
3. In this parsing technique we start parsing from the top to down (start symbol of parse tree to the leaf node of parse tree) in a top- down manner.	In this parsing technique we start parsing from the bottom to top (leaf node of parse tree to start symbol of parse tree) in a bottom-up manner.
4. This parsing techniques uses Left Most Derivation.	This parsing technique uses Right Most Derivation.
5. The main leftmost decision is to select what production rule to use in order to construct the string.	The main decision is to select when to use a production rule to reduce the string to get the starting symbol.
6. Eg. Recursive Descent parser or Predictive Descent parser.	Eg. Shift Reduce parser.

10. Consider the following grammar

$S \rightarrow A a / b$

$A \rightarrow A c / S d / \epsilon$
Eliminate the left recursion.
$S \rightarrow A a \| b$
$A \rightarrow A c|S d| \epsilon$
There is no immediate left recursion.

* To oblaín tue cinmediali left recurs rebstitute tue S-produdeñ́s in $A \rightarrow S d$.

$$
A \rightarrow A c|A a d| b d \mid \epsilon
$$

* Replaced

$$
\begin{aligned}
& A \rightarrow b d A^{\prime} \mid A^{\prime} \\
& A^{\prime} \rightarrow c A^{\prime}\left|\operatorname{ad} A^{\prime}\right| \epsilon
\end{aligned}
$$

* Finally, use oblaíń

$$
\begin{aligned}
& S \rightarrow A a \mid B \\
& A \rightarrow d^{\prime}\left|A^{\prime}\right| A^{\prime} \because \because \\
& A^{\prime} \rightarrow C A^{\prime}\left|\operatorname{ad} A^{\prime}\right| C
\end{aligned}
$$

SECTION B - (5 * 11 = 55 marks $)$
Answer ALL questions.
UNIT - I
11. Design a NFA accepts the following strings over the alphabet $\{0,1\}$. The set of all string that begins with 01 and ends with 00 . Check for the validity of 011100 and 01100 strings and find its equivalent DFA.

Sol
NFA: Non-Deterministic Finuli Automata

- It is transition from more thais one input symbols. If is called as NFA.
-5-luptes:

$$
M=\left(Q, \varepsilon, \delta, q_{0}, F\right) .
$$

where

$$
Q=\left\{q_{0}, q_{1}, q_{2}\right\} \text { - set of stales }
$$

$\Sigma=\{0,1\}$. set of input symbols.
$\delta: Q \times \Sigma^{*} \rightarrow 2^{Q}$ - mapping funchios.
$q_{0}=\left\{q_{0}\right\}$ - starting staci.
$F=\left\{q_{2}\right\}$. Final stàti

- Transition diagram for all shengs liar begeñs unit o) and ends with 00 .

$$
N F A, N A=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right)
$$

- Transition table

\[

\]

DEA:
Transileas diagram:

$\frac{\text { Trans lion Table: }}{\text { il } P}$

state	0	1
q_{0}	q_{1}	$q 0$
q_{1}	q_{2}	$q / 0$
$* q_{2}$	p	p

check for the validity of shing: 0111100 and 01100 . Input sting: 0111100 .

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} . \\
& \delta\left(q_{0}, 01\right)=\delta\left(\delta,\left\{q_{0}, q_{1}\right\}, 1\right)=\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) . \\
& =\left\{q_{0}\right\} \cup \phi=\left\{q_{0}\right\} . \\
& \delta\left(q_{0}, 011\right)=\delta\left(q_{0}, 1\right)=\left\{q_{0}\right\} \\
& \delta\left(q_{0}, 0111\right)=\delta\left(q_{0}, 1\right)=\left\{q_{0}\right\} . \\
& \delta\left(q_{0}, 01111\right)=\delta\left(q_{0}, 1\right)=\left\{q_{0}\right\} . \\
& \delta\left(q_{0}, 011110\right)=\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} . \\
& \delta\left(q_{0}, 0111100\right)=\delta\left(\delta,\left\{q_{0}, q_{1}\right\}, 0\right) \\
& =\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{1}\right\} \cup\left\{q_{2}\right\} . \\
& =\left\{q_{0}, q_{7}, q_{2}\right\} .
\end{aligned}
$$

It is Accepted (q_{2} is a final state).
Input sling: 01100 .

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=\delta\left\{q_{0}, q_{1}\right\} \\
& \delta\left(q_{0}, 01\right)=\delta\left(\delta,\left\{q_{0}, q_{1}\right\}, 1\right) \\
&=\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \\
&=\left\{q_{0}\right\} \cup \phi=\left\{q_{0}\right\} \\
& \delta\left(q_{0}, 011\right)=\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} \\
& \delta\left(q_{0}, 0110\right)=\delta\left(\delta,\left\{q_{0}, q_{1}\right\}, 0\right) \\
&=\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right) \\
&=\left\{q_{0}, q_{1}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{0}\right\} \\
&=\left\{q_{0}, q_{1}, q_{2}\right\}
\end{aligned}
$$

Accepted.

Or
12. Consider the following NFA - ϵ for an identifier. Consider the ϵ - closure of each state and find its equivalent DFA.

Sol: (i) $\hat{\delta}(1, \epsilon)=\{1,2,3,4,6\}$.
(ii) $\delta(4, \epsilon)=\{4\}$.
(iii) $\hat{\delta}(5, \epsilon)=\{5,7\}$.

$$
\text { civ) } \begin{aligned}
\hat{\delta}(4, a) & =\epsilon-\text { closure }(\delta(\hat{\delta}(4, \epsilon), a) \\
& =\epsilon-\text { closure }(\delta(\{4\}, a)=E-\operatorname{cosur}(\{5\}) \\
& =\{5,7\} .
\end{aligned}
$$

(v) $\hat{\delta}(4, a b)=\epsilon$-clarue $(\delta(\hat{\delta}(4, a), b)$
$=E-c$ oxure $(\delta(\{5,7\}, b)$
$=E$-closure $(\delta(5, b) \cup \delta(7, b)$.
$=E$-cloxue $(\in\{6\} \cup \phi)$
$=E-$ cloxure $(\{6\})$

$$
=\{6\}
$$

13. Construct the following grammar in CNF.

$$
\mathrm{S} \rightarrow \text { abSba / bAaB / bb }
$$

$$
\begin{aligned}
& A \rightarrow a a / a S A b \\
& B \rightarrow A a / a b b
\end{aligned}
$$

Sol: chomsky Normal form (CNF).

1. No null and unit produchoñs.
2. Let $G_{1}=\left(N_{*}^{\prime},\{a, b\}, S, P_{i}^{*}\right)$ where.
P_{1} and N^{\prime} are
(i) $A \rightarrow a a, B \rightarrow a b b, S \rightarrow b b$ are added to P, .
(ii) $S \rightarrow a b S_{b a} ; S \rightarrow b A a B$
$A \rightarrow a S A b \quad B \rightarrow A a$, yield.

$$
\begin{aligned}
S & \rightarrow C_{a} C_{b} S C_{b} C_{a}, S \rightarrow C_{b} A C_{a} B, \\
A & \rightarrow C_{a} S A C_{b}, B \rightarrow A C_{a}, C_{a} \rightarrow a, C_{b} \rightarrow b . \\
N^{\prime} & =\left\{S, A, B, C_{a}, C_{b}\right\} .
\end{aligned}
$$

(iii) P_{1} consists of $S \rightarrow C_{a} C_{b} S C_{b} C_{a}, s \rightarrow C_{b} A C_{a} B$,

$$
\begin{aligned}
A & \rightarrow C_{a} S A C_{b}, B \rightarrow A C_{a}, C_{a} \rightarrow a, C_{b} \rightarrow b . \\
& \rightarrow a a, B \rightarrow a b b \\
S & \rightarrow C_{1} C_{2} S C_{2} C_{1}, S \rightarrow C_{2} C_{3} B, A \rightarrow C_{1} S A C_{2} \\
B & \rightarrow C_{3}, C_{1} \rightarrow C_{a}, C_{2} \rightarrow C_{b}, C_{3} \rightarrow A C_{a}
\end{aligned}
$$

The reselling production in P_{1} added to P_{2}.

$$
G_{2}=\left(\left\{s, A, B, C_{a}, C_{b}, c_{1}, c_{2}, c_{3}\right\},\{a, b\}, P_{2}, s\right) .
$$

where P_{2} consist's of $S \rightarrow C_{1} C_{2} S C_{2} C_{1}, S \rightarrow C_{2} C_{3} B, A \rightarrow C_{1} S A C_{2}$,

$$
B \rightarrow C_{3}, C_{1} \rightarrow C_{a}, C_{2} \rightarrow C_{b}, C_{3} \rightarrow A C_{a}, A \rightarrow a a, B \rightarrow a b b
$$

q_{2} is in $C N F 川$.
14. Convert the following grammar G into Greibach Normal Form (GNF).

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow B S / b \\
& B \rightarrow S A / a
\end{aligned}
$$

Sol: Greibach Normal form (GNF).
sod

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow B S \mid b \text {. } \\
& A \rightarrow S A \mid a . \\
& A_{1} \rightarrow A_{2} A_{3} \\
& A_{2} \rightarrow A_{3} A_{1} \mid b . \\
& A_{3} \rightarrow A_{1} A_{2} \mid a . \\
& A_{3} \rightarrow A_{1} A_{2} \mid a . \\
& A_{3} \rightarrow A_{2} A_{3} A_{2} \mid a \text {. } \\
& A_{3} \rightarrow A_{3}\left[A_{1} A_{3} A_{2} \text { b } A_{3} A_{2}\right. \text { 若 } \\
& \begin{array}{l}
\left.A \rightarrow A \alpha\right|^{A} B \\
\left.A \rightarrow B A^{\prime}\right|_{B}
\end{array} \\
& A \rightarrow \beta A^{\prime} \mid \beta \\
& B^{\prime} \rightarrow \alpha A^{\prime} \mid \alpha .
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \rightarrow A_{1} A_{3} A_{2} A^{1} \mid A_{1} A_{3} A_{2} \\
& A_{2} \rightarrow A_{3} A_{1} \mid b . \\
& A_{2} \rightarrow C A_{3} A_{2} A^{\prime} A_{1}\left|a A^{\prime} A_{1}\right|\left(A_{3} A_{2} A_{1}\right) \text { a } A_{1} \mid b \\
& \begin{array}{l}
A_{1} \rightarrow A_{2} A_{3} \\
A_{1} \rightarrow A_{3} A_{2} A^{\prime} A_{1} A_{3}\left|a_{A}^{\prime} A_{1} A_{3}\right| b A_{3} A_{2} A_{1} A_{3}\left|a A_{1} A_{3}\right| b A_{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \rightarrow b A_{3} A_{2} A^{\prime} A_{1} A_{3} A_{3} A_{2} A^{\prime}\left|a A^{\prime} A_{1} A_{3} A_{3} A_{2} A^{\prime}\right| \\
& b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2} A^{\prime}\left|a A_{1} A_{3} A_{3} A_{2} A^{\prime}\right| \\
& \text { a } A_{3} A_{3} A_{2} A^{\prime}\left|b A_{3} A_{2} A^{\prime} A_{1} A_{2} A_{3} A_{2}\right| \\
& a A^{\prime} A_{1} A_{3} A_{3} A_{2}\left|b A_{3} A_{2} A_{1} A_{3} A_{3} A_{2}\right| \\
& a A_{1} A_{3} A_{3} A_{2} \mid b A_{3} A_{3} A_{2} . \\
& \text { It is as GNF, }
\end{aligned}
$$

UNIT - III
15. Design a Turing machine to accept the language $L=\left\{0^{n} 1^{n} n \geq 1\right\}$. Draw the transition diagram.
(Also specify the instantaneous description to trace the string 0011).

$$
\begin{aligned}
& \text { Solution : } \\
& \text { Given a finite sequence of } 0 \text { 's and } 1 \text { 's on its tape. The turing machine } \\
& \text { is designed using the following way. } \\
& \text { (i) } M \text { replaces the leftmost } 0 \text { by } x \text {, moves right to the leftmost } 1 \text {, } \\
& \text { replacing it by } y \text {. } \\
& \text { (ii) Then } M \text { moves left to find the rightmost } x \text {, and moves one cell } \\
& \text { right to the leftmost } 0 \text { and repeats the cycle. } \\
& \text { (iii) While searching for a } 1 \text {, if a blank is encountered, then } M \text { halts } \\
& \text { without accepting. } \\
& \text { (iv) After changing a } 1 \text { to a } y \text {, if } M \text { finds no more } 0 \text { 's, then } M \text { checks } \\
& \text { that no more } 1 \text { 's remain, accepting the string else not. } \\
& \text { Assume the set of states } Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \Sigma=\{0,1\} \\
& \vdash=(0,1, x, y, B\} \\
& F=\left\{q_{4}\right\} \\
& \text { let } q_{0} \text { be the initial state and at state } q_{0} \text {, it replaces the leftmost } 0 \text { by } x \text {, } \\
& \text { and changes it to } q_{1} \text {. At } q_{1}, M \text { searches right for } 1 \text { 's, skipping over } 0 \text { 's and } y \text { 's. }
\end{aligned}
$$

If M finds a 1 , it changes it to y, entering state q_{2}. From q_{2}, it searches left for an x and moves right to change the state to $\mathrm{q}_{0^{-}}$

At q_{0}, if y is encountered, it goes to state q_{3} and checks that no 1 's remain. If the y^{\prime} 's are followed by a B, state q_{4} is entered and then accepted And for all others, M rejects.

	0	1	x	y	B
q_{0}	$\left(q_{1}, x, R\right)$	-	-	$\left(q_{3}, y, R\right)$	-
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, y, L\right)$	-	$\left(q_{1}, y, R\right)$	-
q_{2}	$\left(q_{2}, 0, L\right)$	-	$\left(q_{0}, x, R\right)$	$\left(q_{2}, y, L\right)$	-
q_{3}	-	-	$\left(q_{3}, y, R\right)$	$\left(q_{4}, B, R\right)$	
q_{4}	-	-	-	-	

$E g:$
(i) $q_{0} 0011 \vdash \times q_{1} 011 \vdash \times 0 q_{1} 11{ }^{0} 11 q_{2} 0 y 1 q_{2} x 0 y 1 \vdash$
 $x x q_{0} y y \nabla^{2} x y q_{3} y \vdash x x y y q_{3} \quad \vdash x x y y B q_{4}$.

Accepted.
16. Show that the union of two recursive language is recursive and union of two Recursively enumerable language is recursive.

Recursive languages:

We refer to a language L as recursive if there exists a turing machine T for it. In this case, the turing machine accepts every string in language L and rejects all strings that don't match the alphabet of L.

In other words, if string S is part of the alphabet of language L, then the turing machine T will accept it otherwise the turing machine halts without ever reaching an accepting state.

Recursively enumerable languages.

Here if there is a turing machine T that accepts a language L, the language in which an enumeration procedure exists is referred to as a recursively enumerable language.
Note that some recursive languages are enumerable and some enumerable languages are recursive.

The relationship between recursive and recursively enumerable languages.

If the languages $L 1$ and $L 2$ are recursive, their union $L 1 \cup L 2$ is also recursive.
Proof:
We have two turing machines $T 1$ and $T 2$ that recognize languages $L 1$ and $L 2$. We construct a turing machine T as shown:

T simulates $T 1$ and T accepts input S is $T 1$ accepts it also. On the other hand, if $T 1$ rejects, T simulates $T 2$ and accepts if $T 2$ accepts.
Both $T 1$ and $T 2$ are algorithms and therefore they will halt at some point. We conclude that T accepts $L 1 \cup L 2$.
17. Convert the grammar $S \rightarrow 0 S 1 / A, A \rightarrow 1 A 0 / S / \epsilon$ into PDA that aspects the same language by empty Stack. Check whether 1001 belongs to N(M).

Sol The CFA can be first simplified by eliminating unit produchons:

$$
S \rightarrow O S 1|150| \epsilon
$$

Now will will convert this CFA to GNF:

$$
\begin{aligned}
& s \rightarrow o s x \mid \text { ss } \mid \epsilon \\
& x \rightarrow 1 \\
& y \rightarrow 0
\end{aligned}
$$

The PDA can be:

$$
\begin{aligned}
& \delta(q, \epsilon, s)=\{(q, o s x)|(q, \mid s y)|(q, \epsilon)\} . \\
& \delta(q, \epsilon, x)=\{(q, 1)\} . \\
& \delta(q, \epsilon, y)=\{(q, \emptyset)\} \\
& \delta(q, 0,0)=\{(q, \epsilon)\} . \\
& \delta(q, 1,1)=\{(q, \epsilon)\} .
\end{aligned}
$$

check whether 1001 belongs to $N(M)$.

$$
\begin{aligned}
& \delta(q, 1001, s) \vdash \delta(q, 1001,051) \\
& H \delta(q, 001,1031) \\
& F \delta(q, \phi 1, \varnothing 10 s 1) \\
& 1-\delta(q, x, 1 \text { OuI }) \quad s \rightarrow \text { os } 1 \\
& \vdash \delta(q, e, s) \quad s \rightarrow \in . \\
& \vdash \delta(q, e, \epsilon)
\end{aligned}
$$

A ccepled.

18. Construct a PDA for the language.

A push down automata is similar to deterministic finite automata except that it has a few more properties than a DFA.The data structure used for implementing a PDA is stack. A PDA has an output associated with every input. All the inputs are either pushed into a stack or just ignored. User can perform the basic push and pop operations on the stack which is use for PDA. One of the problems associated with DFAs was that could not make a count of number of characters which were given input to the machine. This problem is avoided by PDA as it uses a stack which provides us this facility also.

A Pushdown Automata (PDA) can be defined as -
$M=(Q, \Sigma, \Gamma, \delta, q 0, Z, F)$ where
Q is a finite set of states
Σ is a finite set which is called the input alphabet
Γ is a finite set which is called the stack alphabet
δ is a finite subset of $Q \times\left(\Sigma \cup\{\varepsilon\} \times \Gamma \times Q \times \Gamma^{*}\right)$ the transition relation.
$q 0 \in Q$ is the start state
$Z \in \Gamma$ is the initial stack symbol
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of accepting states

Construct a PDA for language $L=\left\{0^{n} 1^{m} 2^{m} 3^{n} \mid n>=1, m>=1\right\}$

Then for every 2 as input a 1 is popped out of stack. If some 2's are still left and top of stack is a 0 then string is not accepted by the PDA. Thereafter if $2^{\prime} s$ are finished and top of stack is a 0 then for every 3 as input equal number of 0's are popped out of stack. If string is finished and stack is empty then string is accepted by the PDA otherwise not accepted.

Step-1: On receiving 0 push it onto stack. On receiving 1, push it onto stack and goto next state
Step-2: On receiving 1 push it onto stack. On receiving 2, pop 1 from stack and goto next state
Step-3: On receiving 2 pop 1 from stack. If all the 1's have been popped out of stack and now receive 3 then pop a 0 from stack and goto next state

Step-4: On receiving 3 pop 0 from stack. If input is finished and stack is empty then goo last state and string is accepted

UNIT - V
19. Find whether the following grammar is $\mathrm{LL}(1)$ or not.
$\mathrm{S} \rightarrow \mathrm{abSa} / \mathrm{aa} / \mathrm{aaAb}$
$\mathrm{A} \rightarrow \mathrm{baAb} / \mathrm{b}$
$S \rightarrow a b S a / a a A b$.
$A \rightarrow b a A b \mid b$.
FIRST $(S)=\{a, a\}$.
Follow $(s)=\{\$, a\}$.
FIRS $(A)=\{b, b\}$ Follow $(A)=\{b\}$

FIRST $T\{a\}=\{a\}$
FIRST $\{b\}=\{b\}$

	a	b	S
s	$S \rightarrow a b S A$		$S \rightarrow E$
A		$A \rightarrow b a A b:$	

20. Consider the following grammar

$$
s \rightarrow A S
$$

$s \rightarrow b$
$A \rightarrow S A$
$A \rightarrow a$
Construct SLR parsing table and process the input string.

Slack implementation of SLR parses.

