
5675154

B.Tech. DEGREE EXAMINATION JANUARY 2023

Fifth Semester

Information Technology

THEORY OF COMPUTATION

(2013 – 14 Regulations)

Time: Three hours Maximum: 75 marks

SECTION A – (10 * 2 = 20 marks)

Answer ALL the questions.

1. Give the DFA accepting the language over the alphabet 0, 1 that has the set of all strings such that

 each block of 5 consecutive symbol contains at least two 0’s.

2. Compare the functionalities of Mealy and Moore machines.

3. Give English description of the following language (0+10)*1*.

 This is the language of strings in which there are no two consecutive 1’s except for possibly a string

 of 1’s at the end.

4. Let G be the grammar with S  aSa / bSb / ϵ

 Construct Parse tree for the input string w = ‘aabbaa’

 5. List the primary objectives of Turing machine.

 The main advantages of the Turing machine is we have a tape head which can be moved forward or

 Backward and the input tape can be scanned. The simple logic which we will apply is read out each ‘0’

 Mark it by A and then move ahead along with the input tape and find out 1 convert it to B.

6. State when a problem is said to be undecidable and give an example of an undecidable problem.

 A problem whose language is recursive is said to be decidable. Otherwise the problem is said to be

 undecidable. Decidable problem have an algorithm that takes as input an instance of the problem

 and determine whether the answer to that instance is “yes” or “no”.

 Eg. Of undecidable problems are (1) Halting problem of the TM.

7. Convert the following CFG to PDA.

 S  aAA, A  aS / bS / a.

8. Does a Pushdown Automata have memory? Justify.

 Yes. Finite automata can be used to accept only regular languages. Pushdown automata is a finite

 Automata with extra memory called stack which helps pushdown automata to recognize Context

 Free Languages.

9. Differentiate Top down and bottom up parsing approaches.

 TOP - DOWN PARSER BOTTOM - UP PARSER

1. This is top-down (LL) parser. This is bottom-up (LR) parser.

2. It is attempts to find left most derivations

for an input string.

It can be defined as an attempt to reduce the

input string to the start symbol of a grammar.

3. In this parsing technique we start parsing

from the top to down (start symbol of parse

tree to the leaf node of parse tree) in a top-

down manner.

In this parsing technique we start parsing from

the bottom to top (leaf node of parse tree to

start symbol of parse tree) in a bottom-up

manner.

4. This parsing techniques uses Left Most

Derivation.

This parsing technique uses Right Most

Derivation.

5. The main leftmost decision is to select what

production rule to use in order to construct the

string.

The main decision is to select when to use a

production rule to reduce the string to get the

starting symbol.

6. Eg. Recursive Descent parser or Predictive

Descent parser.

Eg. Shift Reduce parser.

10. Consider the following grammar

 S  Aa / b

 A  Ac / Sd / ϵ

 Eliminate the left recursion.

SECTION B – (5 * 11 = 55 marks)

Answer ALL questions.

UNIT – I

11. Design a NFA accepts the following strings over the alphabet {0, 1}. The set of all string that begins

with 01 and ends with 00. Check for the validity of 011100 and 01100 strings and find its equivalent

DFA.

Or

12. Consider the following NFA - ϵ for an identifier. Consider the ϵ - closure of each state and find its

equivalent DFA.

UNIT – II

13. Construct the following grammar in CNF.

 S  abSba / bAaB / bb

 A  aa / aSAb

 B  Aa / abb

Or

14. Convert the following grammar G into Greibach Normal Form (GNF).

 S  AB

 A  BS / b

 B  SA / a

UNIT – III

15. Design a Turing machine to accept the language L = {0n1n n≥1}. Draw the transition diagram.

 (Also specify the instantaneous description to trace the string 0011).

Or

16. Show that the union of two recursive language is recursive and union of two Recursively

enumerable language is recursive.

 Recursive languages:

 We refer to a language L as recursive if there exists a turing machine T for it. In this case,
the turing machine accepts every string in language L and rejects all strings that don't match the
alphabet of L.

In other words, if string S is part of the alphabet of language L, then the turing machine T will
accept it otherwise the turing machine halts without ever reaching an accepting state.

 Recursively enumerable languages.
 Here if there is a turing machine T that accepts a language L, the language in which an
enumeration procedure exists is referred to as a recursively enumerable language.
 Note that some recursive languages are enumerable and some enumerable languages are
recursive.

The relationship between recursive and recursively enumerable languages.

 If the languages L1 and L2 are recursive, their union L1 U L2 is also recursive.

 Proof:

 We have two turing machines T1 and T2 that recognize languages L1 and L2. We construct a

turing machine T as shown:

 T simulates T1 and T accepts input S is T1 accepts it also. On the other hand,

if T1 rejects, T simulates T2 and accepts if T2 accepts.

Both T1 and T2 are algorithms and therefore they will halt at some point. We conclude

that T accepts L1 U L2.

UNIT – IV

17. Convert the grammar S 0S1 / A, A  1A0 / S / ϵ into PDA that aspects the same language by

empty Stack. Check whether 1001 belongs to N(M).

Or

18. Construct a PDA for the language.

 A push down automata is similar to deterministic finite automata except that it has a few more

properties than a DFA.The data structure used for implementing a PDA is stack. A PDA has an output

associated with every input. All the inputs are either pushed into a stack or just ignored. User can

perform the basic push and pop operations on the stack which is use for PDA. One of the problems

associated with DFAs was that could not make a count of number of characters which were given input

to the machine. This problem is avoided by PDA as it uses a stack which provides us this facility also.

A Pushdown Automata (PDA) can be defined as –

M = (Q, Σ, Γ, δ, q0, Ζ, F) where

Q is a finite set of states

Σ is a finite set which is called the input alphabet

Γ is a finite set which is called the stack alphabet

δ is a finite subset of Q X (Σ ∪ {ε} X Γ X Q X Γ*) the transition relation.

q0 ∈ Q is the start state

Ζ ∈ Γ is the initial stack symbol

F ⊆ Q is the set of accepting states

 Construct a PDA for language L = {0n1m2m3n | n>=1, m>=1}

Approach used in this PDA –

First 0’s are pushed into stack. Then 1’s are pushed into stack.

Then for every 2 as input a 1 is popped out of stack. If some 2’s are still left and top of stack is a 0 then

string is not accepted by the PDA. Thereafter if 2’s are finished and top of stack is a 0 then for every 3 as

input equal number of 0’s are popped out of stack. If string is finished and stack is empty then string is

accepted by the PDA otherwise not accepted.

Step-1: On receiving 0 push it onto stack. On receiving 1, push it onto stack and goto next state

Step-2: On receiving 1 push it onto stack. On receiving 2, pop 1 from stack and goto next state

Step-3: On receiving 2 pop 1 from stack. If all the 1’s have been popped out of stack and now receive 3

then pop a 0 from stack and goto next state

Step-4: On receiving 3 pop 0 from stack. If input is finished and stack is empty then goto last state and

string is accepted

UNIT – V

19. Find whether the following grammar is LL(1) or not.

 S  abSa / aa / aaAb

 A  baAb / b

Or

20. Consider the following grammar

 S  AS

 S  b

 A  SA

 A  a

 Construct SLR parsing table and process the input string.

